\qquad Hour \qquad

Practice TEST for Circular Motion/Gravity/Pendulums

1. A pilot $(72 \mathrm{~kg})$ is flying a small plane in a circular path with a radius of 50 m . If it takes him 15.7 sec to make 1 circle, calculate the centripetal force acting on him.
2. Calculate the force of attraction between the Earth and the moon if the distance from center to center is $\mathbf{3 . 8 4 \times 1 0 ^ { 8 }} \mathbf{~ m}$.
3. How far away from the center of the earth (\mathbf{r}) would you (100 kg) need to go in order for the acceleration due to gravity to be equal to $2.9 \mathrm{~m} / \mathrm{s}^{2}$? What would your weight be there? How many g's would you feel?
4. A satellite for AT\&T is orbiting at $450,000 \mathrm{~m}$ above the surface of the earth. Calculate how fast it is traveling in mph.
\qquad Hour \qquad
5. What are the definitions and units for the following items: gravitational force, centripetal force, centrifugal force, mass, G, period
6. How many meters long should a pendulum on earth be to have a period of 1.5 sec if the mass is 3.5 kg ?
7. What affect does mass have on the period of a pendulum?
8. What affect does length have on the period of a pendulum?
9. Find the period (T) of a pendulum with a length of 0.84 m on the International Space Station which is $344,000 \mathrm{~m}$ above the surface of the Earth.
